Volume 5, Issue 1, March 2019, Page: 16-21
Optimizing Emitters’ Density and Water Supplies in Trickle Irrigation Systems
Hammami Moncef, Hydraulic Department, Higher School of Engineers Medjez El Bab, University of Jendouba, Jendouba, Tunisia
Zayani Khemaies, Department of Rural Engineering, National Agronomic Institute of Tunis, University of Carthage, Tunis, Tunisia
Received: Dec. 9, 2018;       Accepted: Jan. 30, 2019;       Published: Feb. 28, 2019
DOI: 10.11648/j.ajwse.20190501.13      View  157      Downloads  34
Abstract
The usual approaches for designing trickle irrigation systems are based upon empirical estimation of the emitters’ density and the moistened soil volume. The objective of this paper is to implement a quasi-analytical approach that allows the inference of these two parameters. The emitters’ density is determined so that the rooted soil volume would be moistened even at the peak period. The proposed approach enables to adjust the irrigation time in order to replenish the rooted soil volume up to a threshold for an optimal plant growth. The required inputs are: the water retention curve, the hydraulic conductivity at the wetting front, the radius of the moistened spot at the soil surface, and the rooted soil depth. The method is assessed with respect to study cases for sandy and silty soils. The used emitters’ discharge were 2 l/h and 4 l/h. The present approach has the advantage of preserving the mass conservation as well as the dynamic aspect of irrigation management. For design purpose, the irrigation time is set equal to the time required to attain a quasi-state flow conditions within the rooted zone. Nevertheless, irrigation time should vary so that design errors are adjusted for irrigation scheduling needs.
Keywords
Trickle Irrigation, Wetted Soil Volume, Emitters’ Density, Irrigation Management
To cite this article
Hammami Moncef, Zayani Khemaies, Optimizing Emitters’ Density and Water Supplies in Trickle Irrigation Systems, American Journal of Water Science and Engineering. Vol. 5, No. 1, 2019, pp. 16-21. doi: 10.11648/j.ajwse.20190501.13
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Sawa Andreas P. and Frenken Karen, 2002. Localized irrigation systems Planning, Design Operation and Maintenance. Irrigation Manual, Module 9. Frontline Electronic Publishing, Harare, Zimbabwe. Printed by: Préci-ex, Les Pailles, Mauritius.
[2]
Jianhua Zheng, Guanhua Huang, Dong dong Jia, Jun Wang, Mariana Mota, Luis S. Periera, Quanzhong Huang, Xu Xu, Haijun Liu, 2013. Reponses of drip irrigated tomato (Solanum Lycopersicum) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. AGWAT 129: 181-193.
[3]
Hammami Moncef and Zayani Khemaies, 2016. An analytical approach to predict the moistened bulb volume beneath a surface point source. AGWAT. 166: 123-129.
[4]
Al-Ogaidi A. M., Wayayok, A., M. K. R., Abdullah, A., 2015. A Modified Empirical Model for Estimating the Wetted Zone Dimensions under Drip Irrigation. Journal Teknologi. 76, 69–73.
[5]
Healy W. and Warrick A. W., 1988. A generalised solution to infiltration from surface soil point source. Soil Sci. Soc. Am. J., 52: 1245-1251.
[6]
Schwartzman, B. M. and Zur, B., 1986. Emitter Spacing and Geometry of Wetted Soil Volume. J. Irrig. Drain. Eng. (ASCE) 112, 242–253.
[7]
Keller J. and Karmelli D., 1974. Trickle irrigation design parameters. Trans. ASEA.
[8]
Ahmed A. M. Al-Ogaidi, Aimrun Wayayok, M. K. Rowshon, Ahmed Fikri Abdullah 2016. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agric. Water Manag. Vol. 176 (203-213).
[9]
Ababou R., 1981. Modélisation des transferts hydriques dans le sol en irrigation. Thèse Docteur-Ingénieur, Institut Polytechnique de Grenoble.
[10]
Lafolie F., Guennelon R., Van Genuchten M. Th., 1989a. Analysis of water flow under trickle irrigation: I. Theory and numerical solution. Soil Sci. Soc. Am. J. 53: 1310-1318.
[11]
Cook, F. J., Thorburn, P. J., Fitch, P., Bristow, K. L., 2003. WetUp: a software tool to display approximate wetting pattern from drippers. Irrig. Sci. 22, 129–134.
[12]
Communar Gregory, Friedman Shmulik P., 2013. Unsteady infiltration from pointand line sources in laterally confined domains. Soil Sci. Soc. Am. J. 77, 1529.
[13]
Brunetti G., Simunek J., Bautista E., 2018. A hybrid finite volume-finite element model for numerical analysis of furrow irrigation and fertigation. Journal of Computers an Electronics in Agriculture 150. DOI: 10.1016/j. compag. 2018.05.01.
[14]
Revol P., Brent E., Kosuth P. and Vachaud G., 1996. The free-water pond under a trickle source: a field-test of existing theories Irrig. Sci., 16: 169-173.
[15]
Wooding R. A., 1968. Steady infiltration from a shallow circular pond. Water Resour. Res., 4: 12598-1273.
[16]
Raats P. A. C., 1971. Steady infiltration from point sources cavities and basins. Soil Sci. Soc. Am. J., 35: 689-694.
[17]
Philip J. R., 1985. Steady absorption from spheroidal cavities. Soil Sci. Soc. Am. J., 49: 828-830.
[18]
Sen H. S, D. Paul, K. Bandyopadhyay, and N. B. Dash, 1992. A simple numerical solution for two-dimensional moisture distribution under trickle irrigation. Soil Sci. 154: 350 – 356.
[19]
Coelho E. F. and D. Or, 1997. Applicability of analytical solutions for flow from point sources to drip irrigation management. Soil Sci. Soc. Am. J., 61 : 1331-1341.
[20]
Warrick A. W., 1974. Time-dependent linearized infiltration. I. Point sources. Soil Sci. Soc. Am. J., 38: (384-386).
[21]
Hammami M., Daghari H., Balti J. and Maalej M., 2002. Approach for predicting the wetting front depth beneath a surface point source: Theory and numerical aspect. Irrig. and Drain. 51: 347-360.
[22]
Carrion F., Turjuelo J. M., Hernandez D., and Moreno M. A., 2013. Design of micro irrigation subunit of minimum costs with proper operation. Irrig. Sci. Springer. Vol. 31 (5): 1199-1211.
[23]
Zayani K. and Hammami M., 2009. Design of level ground laterals in trickle irrigation systems. Journal of Irrigation and Drainage Engineering (ASCE), Vol. 135, n°5: 620–625.
[24]
Zayani K., Hammami M., Alouini A. and Souissi A., 2013. Design of Nonzero Uniformly sloping Laterals in Trickle Irrigation Systems. Journal of Irrigation and Drainage Engineering (ASCE): Vol. 139 (5): 419-425.
[25]
Alaa Nabil El-Hazek, 2016. Revision approach of optimum design of pressurized irrigation system. Archives of Current Research International 5 (3): 1-10.
[26]
Asif, M. M. Ahmad, A. G. Mangrio, G. Akbar, A. H. Memon. 2015. Design, Evaluation and Irrigation Scheduling of Drip Irrigation System on Citrus Orchard. Pakistan Journal of Meteorology, Vol. 12, Issue 23.
[27]
Keller, J. and Bliesner R. D., 1990. Sprinkler and Trickle Irrigation. Van Nostrand Reinhold, New York..
[28]
Palau-Salvador G., Sanchis L., Gonzalez-Altozano P., Arviza- Valverde J., 2006. Real local losses estimation for on-line emitters using empirical and numerical procedure. J. Irrig. Drain. Eng. 132 (6): 522-530.
[29]
Provenzano G. and Pumo D., 2004. Experimental analysis of local pressure losses for micro-irrigation laterals. J. Irrig. Drain. Eng. 130 (4): 318-324.
[30]
Sayed-Hossein Sadeghi, Troy Peters, and Vakhtang Shelia, 2016. Energy Grade line assessment for tapered micro irrigation laterals. . J. Irrig. Drain. Eng. 04016054 (ASCE).
[31]
Konstantinos X. Soulis, and Stamatios Elmaloglou, 2016. Optimum Soil Water Content Sensors Placement in Drip Irrigation Scheduling Systems: Concept of Time Stable Representative Positions. J. Irrig. Drain. Eng. 04016054 (ASCE).
[32]
Sammis T., Charma P., Shuka M. K., Wang J., Miller D., 2012. A water-balance drip-irrigation scheduling model. AGWAT 113: 30-37.
[33]
Al-Qinna, M. L, Abu-Awwad A. M., 2001. SW-Soil and Water: Wetting Patterns under Trickle Source in Arid Soils with Surface Crust. Journal of Agriculture engineering research, 80: 301-305.
[34]
Hammami Moncef., 2001. Nouvelle Approche pour déterminer le volume de sol humidifié par un goutteur. Thèse de Doctorat d’état es-sciences physiques. Faculté des sciences mathématiques, physiques et naturelles de Tunis.
[35]
Jamil Ahmed, Issam Daghari, and Ali Gharbi, 2016. Analysis of Several Discharges – Durations - Drip Line Placements under Mango Trees. International Journal of Advanced Research, Vol. 4 (7): 968-984.
[36]
Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522.
[37]
By Fred L. O. and Bahram S., 1997. Green and Ampt infiltration with redistribution. Journal of irrigation and drainage engineering, 123: 386-393.
[38]
Hillel D., 1988. L'eau et le sol: principes et processus physiques. Traduit de l'anglais par Lui W. De Backer. Louvain-la-neuve Académia.
[39]
Lubana P. P. S. and Narda N. K., 1998. Soil water dynamics model for trickle irrigated tomatoes. Agricultural water management, 37: 145 – 161.
Browse journals by subject