Volume 6, Issue 1, March 2020, Page: 17-30
Modelling Torrential Rain Flows in Urban Territories: Floods - Natural Channels (The Case Study of Madeira Island)
Sérgio Lousada, Faculty of Exact Sciences and Engineering (FCEE), Department of Civil Engineering and Geology (DECG), University of Madeira (UMa), Funchal, Portugal; VALORIZA - Research Centre for Endogenous Resource Valorization, Portalegre, Portugal; Environmental Resources Analysis Research Group (ARAM), University of Extremadura, Badajoz, Spain; Institute of Research on Territorial Governance and Inter-Organizational Cooperation, Dąbrowa Górnicza, Poland; CITUR - Madeira - Centre for Tourism Research, Devel
Luís Loures, Polytechnic Institute of Portalegre (IPP), Portalegre, Portugal; Research Centre for Tourism, Sustainability and Well-being (CinTurs), University of Algarve, Faro, Portugal; VALORIZA - Research Centre for Endogenous Resource Valorization, Portalegre, Portugal
Received: Oct. 9, 2019;       Accepted: Jan. 10, 2020;       Published: Feb. 4, 2020
DOI: 10.11648/j.ajwse.20200601.13      View  209      Downloads  97
Abstract
The understanding of flood phenomena regarding torrential rain, occurring in natural channels within urban areas represents a crucial aspect to increase safety and life´s standards of the populations, issues that are deeply related to a well-developed sustainable urban and spatial planning. In this regard, flows inside urban areas have great heterogeneity, therefore their characterization requires a formulation which explicitly incorporates this spatial variability. The present study intends to establish a parallel between the selected models, numerical and reduced, enabling to examine their contributions regarding the flow characterization and water height in natural channels within urban settlements located near the river mouth and inserted in hydrographic basins with accentuated orography, as is the case of Funchal urban area at Madeira Island. Based on the available resources, the geometric simplicity of the study case and the results, the most appropriate method is the programmed spreadsheet, providing prompt and reliable information for the design of better adapted hydraulic structures that can face this extreme phenomenon, checking the adaptability of existing structures, as well as in the decision-making process concerning urban planning, safeguarding the populations in similar conditions.
Keywords
Floods, Modelling, Natural Channels, Sustainable Spatial Planning, Urban Agglomerations
To cite this article
Sérgio Lousada, Luís Loures, Modelling Torrential Rain Flows in Urban Territories: Floods - Natural Channels (The Case Study of Madeira Island), American Journal of Water Science and Engineering. Vol. 6, No. 1, 2020, pp. 17-30. doi: 10.11648/j.ajwse.20200601.13
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Konrad, C. P. (2003). Effects of Urban Development on Floods. USGS Numbered Series - Report 076-03, 4 p.. doi: 10.3133/fs07603.
[2]
Linmei, N., Oddvar, L., Geir, L. & Elisabeth, S. (2009) Impacts of climate change on urban drainage systems – a case study in Fredrikstad, Norway, Urban Water Journal, 6: 4, 323-332. doi: 10.1080/15730620802600924.
[3]
Granados-Olivas, A., Alatorre-Cejudo, L., Adams, D., Serra, Y., Esquivel-Ceballos, V., Vazquez-Galvez, F., Eastoe, C. (2016). Runoff Modeling to Inform Policy Regarding Development of Green Infrastructure for Flood Risk Management and Groundwater Recharge Augmentation along an Urban Subcatchment, Ciudad Juarez, Mexico. In Journal of Conteporary Water Research & Education (Vol. 159, pp. 50-61). Wiley, 111 River ST, Hoboken 07030-5774, NJ USA. doi: 10.1111/j.1936-704X.2016.03229.x.
[4]
Majewski, W. (2016). Urban flash flood in Gdansk - 2001. Case study. In Meteorology Hydrology and Water Management-Research and Operational Applications (2 ed., Vol. 4, pp. 41-49). Warsaw, Poland: Institute of Meteorology & Water Management. doi: 10.26491/mhwm/64636.
[5]
Rodriguez-Morata, C., Ballesteros-Cánovas, J., Trappmann, D., Beniston, M., & Stoffel, M. (2016). Regional reconstruction of flash flood history in the Guadarrama range (Central System, Spain). Science.
[6]
Kourgialas, N. N., & Karatzas, G. P. (2017). A national scale flood hazard mapping methodology: The case of Greece – Protection and adaptation policy approaches. Science of the Total Environment, 441-452. doi: 10.1016/J.SCITOTENV.2017.05.197.
[7]
Mahmood, M. I., Elagib, N. A., Horn, F., & Saad, S. A. (2017). Lessons learned from Khartoum flash flood impacts: An integrated assessment. Science of the Total Environment, 1031–1045. doi: 10.1016/j.scitotenv.2017.05.260.
[8]
Recanatesi, F., Petroselli, A., Ripa, M. N., & Leone, A. (2017). Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban watershed of the metropolitan area of Rome (Italy). Journal of Environmental Management, 6-18. doi: 10.1016/J.JENVMAN.2017.06.024.
[9]
Nie, L., Linholm, O., Lindholm, G., Syversen, E., (2009). Impacts of climate change on urban drainage systems- a case study in Fredrikstad, Norway. Urban Water Journal, 6 (4), 323-332. doi: 10.1080/15730620802600924.
[10]
Correia, C. M. (2007, maio). Boas Práticas para Ocupação do Solo, no respeito pelos Recursos Hídricos. Comissão de Coordenação e Desenvolvimento Regional de Lisboa e Vale do Tejo.
[11]
Semadeni-Davies, A., Hernebring, C., Svensson, G., Gustafsson, L. (2008). The impacts of climate change and urbanization on drainage in Helsingborg, Sweden: Suburban stormwater. Journal of Hydrology, 350, 114–125. doi: 10.1016/j.jhydrol.2007.11.006.
[12]
Watt, W. E., Waters, D., and McLean, R. 2003. Climate change and urban stormwater infrastructure in Canada: context and case studies. Hydrology Research Group, Department of Civil Engineering, Queen’s University.
[13]
Grum, J., H., Jorgensen, M., Johansen, A., T., Linde, R. M. (2006). The effect of climate change on urban drainage: An evaluation based on regional climate model simulations. Water Science & Technology 54 (67), 9-17. doi: 10.2166/wst.2006.592.
[14]
Jovanovic, T., Mejía, A., Gall, H., & Gironás, J. (2014). Effect of urbanization on the long-term persistence of streamflow records. Physica A, 208-221. doi: 10.1016/J.PHYSA.2015.12.024.
[15]
Mailhot, A., Duchesne, S. (2010). Design criteria of urban drainage infrastructures under climate change. Journal of Water Resources Planning and Management, 136, 201-208. doi: 10.1061/(ASCE)WR.1943-5452.0000023.
[16]
Arisz H, Burrell, B. C. (2006). Urban drainage infrastructure planning and design considering climate change. Proceedings of EIC Climate Change Technology Conference 2006, Engineering Institute of Canada (EIC), Ottawa Congress Center, 9–12 May, 1–9. doi: 10.1109/EICCCC.2006.277251.
[17]
Muis, S., Güneralp, B., Jongman, B., Aerts, J. C., & Ward, P. J. (2015). Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Science of the Total Environment, 445-457. doi: 10.1016/J.SCITOTENV.2015.08.068.
[18]
Petit-Boix, A., Sevigné-Itoiz, E., Rojas-Gutierrez, L. A., Barbassa, A. P., Josa, A., Rieradevall, J., & Gabarrell, X. (2017). Floods and consequential life cycle assessment: Integrating flood damage into the environmental assessment of stormwater Best Management Practices. Journal of Cleaner Production, 601-608. doi: 10.1016/J.JCLEPRO.2017.06.047.
[19]
Hengeveld, H. G. (2000). Projections for Canada’s climate future. A discussion of recent simulations with the Canadian Global Climate Model. Editor: David Francis of Lanark House Communications (Toronto). Meteorological Service of Canada, Environment Canada; Downsview, Ontario, ISBN 0-662-64900-1, ISSN 0835-3980the, Minister of Public Works and Government Services Canada, Catalogue No. En57-2000-01E, 32 p.
[20]
Jenkins, K., Surminski, S., Hall, J., & Crick, F. (2017). Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Science of the Total Environment, 159–168. doi: 10.1016/J.SCITOTENV.2017.03.242.
[21]
Didón, L., 1995. Plan-och bygglagen 1987: 10 (Planning and Building law – Swedish).
[22]
Fernandes, J. P., & Cruz, C. S. (2011). Limpeza e Gestão de Linhas de Água (Vol. III). EPAL - Empresa Portuguesa das Águas Livres, S. A.
[23]
Morgan, A., B. Branfireun & F. Csillag. (2004). An Evaluation of the Contributions of Urbanization and Climatic Change to Runoff Characteristics in the Laurel Creek Watershed, Ontario. Canadian Water Resources Journal, Vol. 29 (3): 171–182. doi: 10.4296/cwrj171.
[24]
Oliveira, R. P., Almeida, A. B., Sousa, J., Pereira, M. J., Portela, M. M., Coutinho, M. A., Lopes, S. (2011). A avaliação do risco de aluviões na ilha da Madeira. 10º Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa (10º SILUSBA) (pp. 1-20). IST, UMa & LREC. Retrieved from https://www.researchgate.net/publication/244994405.
[25]
Konig, A., Sægrov, S., and Schilling, W. (2002). Damage assessment for urban flooding. In: Proceedings of the Ninth International Conference on Urban Drainage, 8–13 Sept, 2002, Portland, Oregon, USA.
[26]
Madsen, A. B. (2007). Flood damage and discharge of pollution in the city of Bergen – Analysis of the effect of climate change. MSc. thesis. University of Life Science and Technology.
[27]
Nie, L. (2004). Flooding analysis of urban drainage systems. Ph. D. thesis. Norwegian University of Science and Technology.
[28]
O'Sullivan, A. D., Wicke, D., Hengen, T. J., Sieverding, H. L., & Stone, J. J. (2015). Life Cycle Assessment modelling of stormwater treatment systems. Journal of Environmental Management, 236-244. doi: 10.1016/J.JENVMAN.2014.10.025.
[29]
Ravansalar, M., Rajaee, T., & Kisi, O. (2017). Wavelet-linear genetic programming: A new approach for modeling monthly streamflow. Journal of Hydrology, 461–475. doi: 10.1016/J.JHYDROL.2017.04.018.
[30]
Vevatne, J. and Westskog, H. eds. (2007). Adaptation to climate change in the Oslo region (in Norwegian). Centre for Interdisciplinary Environment and Social research (CIENS), report No. 2007: 01.
[31]
Carvalho, A. M. Galopim de, e BRANDÃO, José M. (1991) Geologia do Arquipélago da Madeira, Lisboa, Museu Nacional de História Natural, Lisboa.
[32]
Quintal, Raimundo & Vieira, Maria José (1985) - Ilha da Madeira - Esboço de geografia física, Funchal, Secretaria Regional do Turismo e Cultura.
[33]
Quintal, Raimundo (1999) - Aluviões da Madeira: séculos XIX e XX. Associação Portuguesa de Riscos, Prevenção e Segurança. doi: https://doi.org/10.14195/1647-7723_6_4.
[34]
Fowler, A. (1999). Potential climate change impacts on water resources in the Aukland Region (New Zealand). Climate Research, Vol. II, 221-245.
[35]
Lindholm, O. (2007). Who should pay for water damage? (in Norwegian). Today’s Business – water, wastewater and sanitation, 4.
[36]
Hammond, M. J., Chen, A. S., Djordjevic, S., Butler, D., & Mark, O. (2013). Urban flood impact assessment: A state-of-the-art review. Urban Water Journal. doi: 10.1080/1573062X.2013.857421.
[37]
Rossel, F., Gironás, J., Mejía, A., Rinaldo, A., & Rodriguez, F. (2014). Spatial characterization of catchment dispersion mechanisms in an urban context. Advances in Water Resources, 290–301. doi: 10.1016/J.ADVWATRES.2014.09.005.
[38]
Mejía, A., Rossel, F., Gironás, J., & Jovanovica, T. (2015). Anthropogenic controls from urban growth on flow regimes. Advances in Water Resources, 125–135. doi: 10.1016/J.ADVWATRES.2015.08.010.
[39]
Mitková, V. B., Pekárová, P., Miklánek, P., & Pekár, J. (2016). Hydrological simulation of flood transformations in the upper Danube River: Case study of large flood events. Journal of Hydrology and Hydromechanics, 337-348. doi: 10.1515/johh-2016-0050.
[40]
Röthlisberger, V., Zischg, A. P., & Keiler, M. (2017). Identifying spatial clusters of flood exposure to support decision making in risk management. Science of the Total Environment, 593–603. doi: 10.1016/J.SCITOTENV.2017.03.216.
[41]
Alexis Morgan, Brian Branfireun & Ferenc Csillag (2004). An Evaluation of the Contributions of Urbanization and Climatic Change to Runoff Characteristics in the Laurel Creek Watershed, Ontario, Canadian Water Resources Journal / Revue canadienne des ressources hydriques, 29: 3, 171-182. doi: 10.4296/cwrj171.
[42]
Zhang, X. B., K. D. Harvey, W. D. Hogg and T. R. Yuzyk. 2001. “Trends in Canadian Streamflow.” Water Resources Research, 37 (4): 987-998.
[43]
Mojaddadi H, Pradhan B, Nampak H, Ahmad N, Ghazali AHB (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics Nat Hazard Risk 8: 1080–1102.
[44]
Tehrany MS, Pradhan B, Jebur MN (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504: 69–79.
[45]
Carmo, J. S. (2004). Modelação em hidráulica fluvial e ambiente. Coimbra: Imprensa da Universidade. doi: 10.14195/978-989-26-0364-3.
[46]
Amador, M. d. (2010). Tipos de métodos científicos. Lisboa: FCSH, Universidade Nova de Lisboa. Retrieved from http://www.fcsh.unl.pt/docentes/cceiaold/images/stories/disciplinas/PhD%20Didactica%20LE/tipos_met_cientificos.pdf.
[47]
Kabiri, F., Afzalimehr, H., & Sui, J. (2017). Flow structure over a wavy bed with vegetation cover. International Journal of Sediment Research, 186-194. doi: 10.1016/j.ijsrc.2016.07.004.
[48]
Liu, C., Shan, Y., Liu, X., Yang, K., & Liao, H. (2016). The effect of floodplain grass on the flow characteristics of meandering compound channels. Journal of Hydrology, 1-17. doi: 10.1016/J.JHYDROL.2016.07.037.
[49]
Rojas R, Feyen L, Bianchi A, Dosio A (2012). Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. J Geophys Res Atmos 117: D17109. https://doi.org/10.1029/2012JD017461.
[50]
Sampson CC, SmithAM, Bates PD, Neal JC, Alfieri L, Freer JE (2015). A high-resolution global flood hazard model. Water Resour Res 51: 7358–7381.
[51]
Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR (2016a). A GISbased flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statisticalmodels withmulti-criteria decision-making technique. Nat Hazards. https://doi.org/10.1007/s11069-016-2357-2.
[52]
Khosravi K, Pourghasemi HR, Chapi K, Bahri M (2016b). Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. EnvironMonit Assess 188: 656.
[53]
Lim J, Lee K (2017). Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information system. Environ Monit Assess 189: 96.
[54]
Abbaszadeh P (2016). Improving hydrological process modeling using optimized threshold-based wavelet de-noising technique. Water Resour Manag 30 (5): 1701–1721.
[55]
Danandeh Mehr A, Kahya E (2017). A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction. J Hydrol 549: 603–615.
[56]
Nourani V, Tahershamsi A, Abbaszadeh P, Shahrabi J, Hadavandi E (2014). A new hybrid algorithm for rainfall-runoff process modeling based on the wavelet transform and genetic fuzzy system. J Hydroinf 16 (5): 1004–1024.
[57]
Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu A, ChenW, Kougias I, Kazakis N (2017). Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. doi: https://doi.org/10.1016/j.scitotenv.2017.10.114.
[58]
Guo E, Zhang J, Ren X, Zhang Q, Sun Z (2014). Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province China. Nat Hazards 74 (2): 947–965.
[59]
Lousada, S., Camacho, R. F. (2018). Hidrologia, Recursos Hídricos e Ambiente - Aulas Teóricas. ISBN 978-989-8805-33-1 (V. 1), Universidade da Madeira, Funchal, Portugal. http://hdl.handle.net/10400.13/2132.
[60]
Mata-Lima, H., Vargas, H., Carvalho, J., Gonçalves, M., Caetano, H., Marques, A., & Raminhos, C. (2007). Comportamento hidrológico de bacias hidrográficas: integração de métodos e aplicação a um caso de estudo. REM - Revista Escola de Minas, 525-536. doi: 10.1590/S0370-44672007000300014.
[61]
Martins, C. M., Mendes, M. d., Abreu, J. M., Almeida, J. P., Lima, J. P., & Lima, I. P. (2010). Curso técnico n.º 1: Hidrologia urbana - Conceitos básicos. Lisboa: Entidade Reguladora dos Serviços de Águas e Resíduos. Universidade de Coimbra.
[62]
Falkovich, G. (2011). Fluid Mechanics. Cambridge University Press.
[63]
Tomaz, P. (2011). Cálculos Hidrológicos e Hidráulicos para Obras Municipais (2 ed.). Navegar.
[64]
Ebtehaj, I., Bonakdari, H., Zaji, A. H., Bong, C. H., & Ghani, A. A. (2016). Design of a new hybrid natural neural network method based on decision trees for calculating the Froude number in rigid rectangular channels. Journal of Hydrology and Hydromechanics, 252-260. doi: 10.1515/johh-2016-0031.
[65]
Singh, V. P. (2016). Handbook of Applied Hydrology, Second Edition. New York: McGraw Hill Professional, 2016.
[66]
Governments, D. R., & Engineers, W. M. (2017). Urban Storm Drainage Criteria Manual. Denver, Colorado: Wright-McLaughlin Engineers.
[67]
Schlichting, H., & Gersten, K. (2017). Boundary-Layer Theory (9 ed.). Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-662-52919-5.
[68]
Das S, Gupta A, Ghosh S (2017). Exploring groundwater potential zones using MIF techniques in semi-arid region: a case study of Hingoli district, Maharashtra. Spat Inf Res 25 (6): 749–756. https://doi.org/10.1007/s41324-017-0144-0.
[69]
Das S, Pardeshi SD, Kulkarni PP, Doke A (2018). Extraction of lineaments from different azimuth angles using geospatial techniques: a case study of Pravara basin, Maharashtra, India. Arab J Geosci 11: 160. https://doi.org/10.1007/s12517-018-3522-6.
[70]
Dou X, Song J, Wang L, Tang B, Xu S, Kong F, JiangX (2017). Flood risk assessment and mapping based on a modified multi-parameter flood hazard index model in the Guanzhong Urban Area, China. Stoch Environ Res Risk Assess 32: 1131–1146. https://doi.org/10.1007/s00477-017-1429-5.
[71]
Su W, Zhang X, Wang Z, Su X, Huang J, Yang S, Liu S (2011). Analyzing disaster-forming environments and the spatial distribution of flood disasters and snow disasters that occurred in China from 1949 to 2000. Math Comput Model 54 (3–4): 1069–1078.
[72]
Yin, R. K. (1994). Case Study Research: Design and Methods. London: SAGE Publications.
[73]
Levy, J. S. (2008). Case Studies - Types, Designs and Logics of Inference. Conflict Management and Peace Science, 1-18. doi: 10.1080/07388940701860318.
[74]
França, J. A., & Almeida, A. B. (2003). Plano regional de água da Madeira. Síntese do diagnóstico e dos objectivos. 6º SILUSBA – Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa (pp. 751-818). Cidade da Praia, República de Cabo Verde: APRH. Retrieved from http://dramb.gov-madeira.pt/berilio/docs/fileload/2FURD01510.pdf.
[75]
Ribeiro, M. L., & Ramalho, M. (2009). Uma Visita Geológica ao Arquipélago da Madeira. Lisboa: Direção Regional do Comércio, Indústria e Energia e Laboratório Nacional de Energia e Geologia, I. P.
[76]
Brum da Silveira, A., Madeira, J., Ramalho, R., Fonseca, P., Rodrigues, C., & Prada, S. (2010). Carta Geológica da ilha da Madeira na escala 1: 50.000. Folha A e B. Região Autónoma da Madeira: Secretaria Regional do Ambiente e Recursos Naturais.
[77]
Ramalho, R., Brum da Silveira, A., Fonseca, P., Madeira, J., Cosca, M., Cachão, M., Prada, S. (2015). The emergence of volcanic oceanic islands on a slow-moving plate: The example of Madeira Island, NE Atlantic. Geochemistry Geophysics Geosystems, 522–537. doi: 10.1002/2014GC005657.
[78]
Pullen, J., Caldeira, R., D. Doyle, J., May, P., & Tomé, R. (2017). Modeling the air-sea feedback system of Madeira Island. Journal of Advances in Modeling Earth Systems, 1-24. doi: 10.1002/2016MS000861.
[79]
Baioni, D. (2011). Human activity and damaging landslides and floods on Madeira Island. Natural Hazards and Earth System Sciences, 3035-3046. doi: 10.5194/nhess-11-3035-2011.
[80]
Lopes, S. (2011). A utilização do SIG na estimativa da precipitação e escoamento fluvial na ilha da Madeira. Funchal: LREC.
[81]
Vieira, I., Barreto, V., Figueira, C., Lousada, S., & Prada, S. (2016). The use of detention basins to reduce flash flood hazard in small and steep volcanic watersheds - A simulation from Madeira Island. Journal of Flood Risk Management. doi: 10.1111/jfr3.12285.
[82]
Gouveia-Reis, D., Lopes, L., & Mendonça, S. (2016). A dependence modelling study of extreme rainfall in Madeira Island. Physics and Chemistry of the Earth, 85-93. doi: 10.1016/j.pce.2015.11.006.
[83]
Tiago Couto, F., Ducrocq, V., Salgado, R., & Costa, M. J. (2016). Understanding significant precipitation in Madeira island using high-resolution numerical simulations of real cases. Quarterly Journal of the Royal Meteorological Society. doi: 10.1002/qj.2918.
[84]
Calabrò, P. S. (2004). Design storms and water quality control. J. Hydrol. Eng. 9 (1), 28–34.
[85]
Müller, T., Schütze, M., Bárdossy, A. (2017). Temporal asymmetry in precipitation time series and its influence on flow simulations in combined sewer systems. Adv. Water Resour. 107, 56–64.
[86]
Vaes, G., Willems, P., Berlamont, J. (2001). Rainfall input requirements for hydrological calculations. Urban Water 3 (1–2), 107–112.
[87]
Tehrany MS, Pradhan B, Mansor S, AhmadN (2015). Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125: 91–101. https://doi.org/10.1016/j.catena.2014.10.017.
[88]
Lencastre, A., & Franco, F. M. (2006). Lições de Hidrologia 3ª edição revista. Lisboa: Fundação da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.
[89]
Orr, T. S, Domaradzki, J. A., Spedding, G. R. & Constantinescu, G. S. (2015). Numerical simulations of the near wake of a sphere moving in a steady, horizontal motion through a linearly stratified fluid at ReD1000. Phys. Fluids 27 (3), 035113.
[90]
Pal, A., Sarkar, S., Posa, A., & Balaras, E. (2016). Regeneration of turbulent fluctuations in low-Froude-number _ow over a sphere at a Reynolds number of 3700. Cambridge University Press. doi: http://dx.doi.org/10.1017/jfm.2016.526.
[91]
ASCE Task Force Committee of the Hydraulic Division. (1963) Friction Factors in Open Channels, Progress Report of the Task Force on Friction factors in Open Channels of the Committee of the Hydraulic Division. J. of Hydr. Div. 89 (HY2).
[92]
Kazemipour, A. K., Apelt, C. J. (1980). Resistance to Flow in irregular Channels Dept. of Civil Eng., Research Report Series No. CE7, University of Queensland, Australia.
[93]
Keulegan, G. H. (1938). Laws of Turbulent Flow in Open Channels. Journal of Research of the National Bureau of Standards. Research Paper 1151, 21, 707-741.
[94]
Nikuradse, J. (1933). Stromungsgesetze in rauhen Rohre (Low of flow in rough pipes). Forschungsheft No. 361, Verein Deutscher Inginieure, Berlin. (Translated into English as NACA TM 1292, Nov. 1950).
[95]
Pillai, N. N. (1970). On uniform flow through smooth rectangular open channels. Journal of Hydraulic Research. 8 (4), 403-418.
[96]
Yen, B. C. (ed.) (1992). Channel flow resistance: centennial of Manning’s formula. Water Resources Publication, Colorado, USA, 1-136.
[97]
Chang, S. (2016). Research on scouring and deposition features and impact factors of gully debris flow—a case study on Jiangjia Gully, Yunnan Province, Thesis PhD, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu.
[98]
He, S., Wang, D., Chang, S., Fang, Y., Lan, H. (2018). Effects of the morphology of sediment-transporting channels on the erosion and deposition of debris flows. Environmental Earth Sciences. doi: https://doi.org/10.1007/s12665-018-7721-y.
[99]
Hossain, A., Jia, Y., & Chao, X. (2009). Estimation of Manning's roughness coefficient distribution for hydrodynamic model using remotely sensed land cover features. 17th International Conference on Geoinformatics, Geoinformatics 2009 (pp. 1-4). Fairfax, Virginia, USA: George Mason University. doi: 10.1109/GEOINFORMATICS.2009.5293484.
[100]
Mata-Lima, H., Raminhos, C., & Silva, V. V. (2008). Controlo do Escoamento e Medição de Caudais: critérios de dimensionamento de descarregadores em canais, colectores e pequenas represas. Revista de Engenharia Civi, Universidade do Minho, 51-66. Retrieved from https://www.researchgate.net/publication/237479081.
[101]
Ricardo, A. M., Franca, M. J., & Ferreira, R. M. (2010). Caracterização do escoamento turbulento em canais com vegetação emersa rígida. 10º Congresso da Água, APRH (pp. 55-68). Portimão, Portugal: APRH. Retrieved from https://www.researchgate.net/publication/277658037.
[102]
Aupoix, B. (2015). Revisiting the Discrete Element Method for Predictions of Flows Over Rough Surfaces. Journal of Fluids Engineering. doi: 10.1115/1.4031558.
[103]
Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Efstratiadis, A. (2016). Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. Journal of Hydrology, 478-492. doi: 10.1016/j.jhydrol.2016.01.020.
[104]
Hernandez-Duenas, G., & Beljadid, A. (2016). A central-upwind scheme with natural viscosity for shallow-water flows in channels. Advances in Water Resources, 323–338. doi: 10.1016/J.ADVWATRES.2016.07.021.
[105]
Kitsikoudis, V., Yagci, O., Kirca, V. S., & Kellecioglu, D. (2016). Experimental investigation of channel flow through idealized isolated tree-like vegetation. Environmental Fluid Mechanics, 1283–1308. doi: 10.1007/s10652-016-9487-7.
[106]
Liu, Y., Engel, B. A., Collingsworth, P. D., & Pijanowski, B. C. (2017). Optimal implementation of green infrastructure practices to minimize influences of land use change and climate change on hydrology and water quality: Case study in Spy Run Creek watershed, Indiana. Science of the Total Environment, 1400–1411. doi: 10.1016/J.SCITOTENV.2017.06.015.
[107]
Acevedo-Espinoza, S. (2014). Debt, Growth and Natural Disasters A Caribbean Trilogy. IMF Working Papers. doi: 10.5089/9781498337601.001.
[108]
Faccini, F., Luino, F., Sacchini, A., & Laura, T. (2014). Flash Flood Events and Urban Development in Genoa (Italy): Lost in Translation. XII Congress "Engineering Geology for Society and Territory". Turin: Springer International Publishing Switzerland. doi: 10.1007/978-3-319-09048-1_155.
[109]
Fadigas, L. (2015). Urbanismo e território: as políticas públicas. Edições Sílabo.
[110]
Neal, J. C., Odoni, N. A., Trigg, M. A., Freer, J. E., Garcia-Pintado, J., Mason, D. C., Bates, P. D. (2015). Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models. Journal of Hydrology, 169-183. doi: 10.1016/j.jhydrol.2015.07.026.
[111]
Castanho, R., Loures, L., Fernández, J., and Fernández-Pozo, L., (2016). Identifying critical factors for success in Cross Border Cooperation (CBC) development projects. Habitat International.
[112]
Castanho, R., Loures, L., Cabezas, J., & Fernández-Pozo, L. (2017). Cross-Border Cooperation (CBC) in Southern Europe—An Iberian Case Study. The Eurocity Elvas-Badajoz. Sustainability, 9 (3), 360.
[113]
Martínez, F. L., Morales, A. P., & Guirado, S. G. (2016). In landscape management all of us have something to say. A holistic method for landscape Preservability evaluation in a Mediterranean region. Land Use Policy, 172–183. doi: 10.1016/J.LANDUSEPOL.2015.11.004.
[114]
Masum, K. M., Mansor, A., Sah, S. A., & Lim, H. S. (2017). Effect of differential forest management on land-use change (LUC) in a tropical hill forest of Malaysia. Journal of Environmental Management, 468-474. doi: 10.1016/J.JENVMAN.2017.06.009.
Browse journals by subject