Research Article
A Computational Model for Water Quality Analysis and Assessment in Tanzania
Cuthbert Barakael Mrema*,
Expeditho Laurent Mtisi
Issue:
Volume 10, Issue 4, December 2024
Pages:
74-86
Received:
13 September 2024
Accepted:
4 October 2024
Published:
29 October 2024
Abstract: Research on water quality has received much attention in both developing and developed countries. This is because of the fact that, the effects of poor quality of water are detrimental to human beings, animals and the environment. This study is about a computational model for water quality analysis and assessment in Tanzania. Water quality can be understood as the measure of suitability of water based on physical, chemical and biological attributes. Water quality analysis and assessment face several challenges due to population growth, urban land use, agricultural activities, and industrialization. Besides, attempts have been made by the scholars to address the challenges. However, the tools used like titrimetric, electrometric, pH-meter, thermometer and turbidity meter are yet to come up with effective solutions. Because of these, the researcher was compelled to adopt computational model which uses Statistical Analysis System (SAS) software in order to come up with effective solutions concerning water quality analysis and assessment. In this study therefore, the secondary data were collected from Lake Victoria littoral stations under the auspices of the Ministry of Water in Tanzania with the objective to get sufficient information concerning water quality analysis and assessment. Additionally, the collected data were coded in SAS software to analyse independent and dependent variables. SAS software therefore, was employed to obtain central tendency and dispersion as benchmarks in determining quality of water. Also, the Multivariate Linear Regression Model was run to obtain coefficients of estimation, 95% confident limits and p-value. Statistical findings from central tendency and dispersion indicate that, the mean for potential of Hydrogen (pH) was 8.165; for total suspended solids was 3.065 mg/l; chloride displayed a mean of 6.494 mg/l; calcium displayed a mean of 6.421 mg/l; iron had a mean of 0.188 mg/l; magnesium displayed a mean of 3.331 mg/l and sulphate had mean of 2.326 mg/l. Looking closely at all of the above-mentioned water quality parameters, they all align with a Tanzania Bureau of Standards (TBS) and World Health Organization (WHO) as shown on table 1. Findings from the Multivariate linear regression model shows that: First, iron had a p-value of 0.0153, magnesium 0.0347 and total hardness had a p-value of 0.001. All of these were statistically significant in the analysis and assessment of water quality as shown on table 2. The study concludes that, the water quality in Lake Victoria complies with both TBS and WHO standards as explained above.
Abstract: Research on water quality has received much attention in both developing and developed countries. This is because of the fact that, the effects of poor quality of water are detrimental to human beings, animals and the environment. This study is about a computational model for water quality analysis and assessment in Tanzania. Water quality can be u...
Show More
Research Article
Water Footprint Reduction in Oil and Gas Refineries through Water Reuse: A Systematic Review
Issue:
Volume 10, Issue 4, December 2024
Pages:
87-107
Received:
22 September 2024
Accepted:
23 October 2024
Published:
12 November 2024
DOI:
10.11648/j.ajwse.20241004.12
Downloads:
Views:
Abstract: Oil and gas refineries are highly water-intensive industrial settings, with effluent containing a significant level of pollution stemming from diverse organic and inorganic compounds. Besides adhering to discharge standards for industrial effluent, incorporating treated oil refinery effluent (ORE) into the production cycle can play a pivotal role in curbing water consumption. In recent years, there has been research into different approaches to reclaiming ORE. Yet, selecting treatment methods that are technically, economically, and environmentally effective is crucial to preventing resource waste. Therefore, this study aimed to examine the last two decades of literature on methods and technologies used for ORE treatment. Based on the inclusion criteria, the final screening included 82 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.86. The included studies were of biological treatment (n = 27), physicochemical processes (n = 12), advanced purification processes (n = 16), membrane-based technologies (n = 15), and green technologies (n = 13). This comprehensive review showed that the advanced membrane-based techniques are effective in the removal of pollutants from ORE for several reasons, such as reducing the consumption of chemicals, high efficiency, and ease of setup and maintenance. However, combined methods with a focus on membrane-based processes (e.g. UF-RO) are the most promising options for the reclamation of ORE. Since some effluent treatment methods require the use of chemicals and energy to run, future research should focus on environmentally friendly methods and the use of renewable energy.
Abstract: Oil and gas refineries are highly water-intensive industrial settings, with effluent containing a significant level of pollution stemming from diverse organic and inorganic compounds. Besides adhering to discharge standards for industrial effluent, incorporating treated oil refinery effluent (ORE) into the production cycle can play a pivotal role i...
Show More